SIFAT KOLIGATIF LARUTAN

0 Comments

A. Molalitas dan Fraksi Mol
1. Molalitas (m) 
   Molalitas menyatakan jumlah mol zat terlarut dalam 1000 gram pelarut. Molalitas dapat dinyatakan dengan rumus:
2. Fraksi Mol (X) 
Fraksi mol menyatakan perbandingan mol suatu zat dengan mol seluruh zat dalam larutan. Dalam campuran zat A dengan zat B, maka fraksi mol masing-masing zat dapat dinyatakan dengan:

SIFAT KOLIGATIF LARUTAN

Sifat koligatif larutan adalah sifat-sifat yang hanya bergantung pada jumlah (kuantitas) partikel zat terlarut dalam larutan dan tidak bergantung pada jenis atau identitas partikel zat terlarut – tidak peduli dalam bentuk atom, ion, ataupun molekul. Sifat koligatif merupakan sifat yang hanya memandang “kuantitas”, bukan “kualitas”. Sifat larutan seperti rasa, warna, dan kekentalan (viskositas) merupakan sifat-sifat yang bergantung pada jenis zat terlarut. Sebagai contoh, larutan NaCl (garam dapur) terasa asin, namun larutan CH3COOH (asam cuka) terasa asam.
Sifat koligatif larutan di antaranya adalah:
1. Penurunan Tekanan uap
2. Kenaikan titik didih
3. Penuruan titik beku 
4. Tekanan Osmosis

Penjelasan tentang sifat koligatif larutan sebagai berikut
A. Sifat Koligatif Larutan Nonelektrolit
  1. Penurunan Tekanan Uap
       Jika zat terlarut bersifat non-volatil (tidak mudah menguap; tekanan uapnya tidak dapat terukur), tekanan uap dari larutan akan selalu lebih rendah dari tekanan uap pelarut murni yang volatil. Secara ideal, tekanan uap dari pelarut volatil di atas larutan yang mengandung zat terlarut non-volatil berbanding lurus terhadap konsentrasi pelarut dalam larutan. Hubungan dalam sifat koligatif larutan ini dinyatakan secara kuantitatif dalam hukum Raoult: tekanan uap dari pelarut di atas larutan, Plarutan sama dengan hasil kali fraksi mol dari pelarut, Xpelarut dengan tekanan uap dari pelarut murni, P°pelarut. Penurunan tekanan uap, ΔP, yaitu P°pelarut−Plarutan berbanding lurus terhadap fraksi mol dari Xterlarut.
X_{pelarut} = \frac{mol \: pelarut}{mol pelarut + mol \: terlarut} \newline \newline X_{terlarut} = \frac{mol \: terlarut}{mol \: pelarut + mol \: terlarut} \newline \newline X_{pelarut} + X_{terlarut} = 1.
P_{larutan} = X_{pelarut} \cdot P_{pelarut}^{\circ} \newline \newline P_{pelarut}^{\circ} - P_{larutan} = (1-X_{pelarut})P_{pelarut}^{\circ} \newline \newline \Delta P = X_{terlarut} \cdot P_{pelarut}^{\circ}.

  1. Kenaikan Titik Didih

       Titik didih dari suatu larutan adalah temperatur ketika tekanan uapnya sama dengan tekanan eksternal. Oleh karena terjadinya penurunan tekanan uap larutan oleh keberadaan zat terlarut non-volatil, dibutuhkan kenaikan temperatur untuk menaikkan tekanan uap larutan hingga sama dengan tekanan eksternal. Jadi, keberadaan zat terlarut dalam pelarut mengakibatkan terjadinya kenaikan titik didih; titik didih larutan, Tb, lebih tinggi dari titik didih pelarut murni, Tb°. Kenaikan titik didih, ΔTb, yaitu Tb−Tb° berbanding lurus terhadap konsentrasi (molalitas, m) larutan, sebagaimana:
molalitas \: (m) = \frac{mol \: terlarut}{kg \: pelarut} \newline \newline \Delta T_b = K_b m.
di mana Kadalah konstanta kenaikan titik didih molal (dalam satuan °C/m) dan m adalah molalitas larutan. 
  1. Penurunan Titik Beku
        Pada larutan dengan pelarut volatil dan zat terlarut non-volatil, hanya partikel-partikel pelarut yang dapat menguap dari larutan sehingga meninggalkan partikel-partikel zat terlarut. Hal serupa juga terjadi dalam banyak kasus di mana hanya partikel-partikel pelarut yang memadat (membeku), meninggalkan partikel-partikel zat terlarut membentuk larutan yang konsentrasinya lebih pekat. Titik beku dari suatu larutan adalah temperatur di mana tekanan uap larutan sama dengan tekanan uap pelarut murni. Pada temperatur ini, dua fasa – pelarut padat dan larutan cair – berada dalam kesetimbangan.
Oleh karena terjadinya penurunan tekanan uap larutan dari tekanan uap pelarut, larutan membeku pada temperatur yang lebih rendah dibanding titik beku pelarut murni — titik beku larutan, Tf, lebih rendah dari titik beku pelarut murni, Tf°. Dengan kata lain, jumlah partikel-partikel pelarut yang keluar dan masuk padatan yang membeku per satuan waktu menjadi sama pada temperatur yang lebih rendah. Sifat koligatif larutan berupa penurunan titik beku, ΔTf, yaitu Tf° – Tf berbanding lurus terhadap konsentrasi (molalitas, m) larutan, sebagaimana:
\Delta T_f = K_f m
di mana Kf adalah konstanta penurunan titik beku molal (dalam satuan °C/m) dan m adalah molalitas larutan.
Berikut ini disajikan tetapan titik didih dan titik beku molal (Kb dan Kf) untuk beberapa pelarut.

  1. Tekanan Osmosis
        Ketika dua larutan dengan konsentrasi yang berbeda dipisahkan oleh suatu membran semipermeabel — membran yang hanya dapat dilewati partikel pelarut namun tidak dapat dilewati partikel zat terlarut—maka terjadilah fenomena osmosis. Osmosis adalah peristiwa perpindahan selektif partikel-partikel pelarut melalui membran semipermeabel dari larutan dengan konsentrasi zat terlarut yang lebih rendah ke larutan dengan konsentrasi zat terlarut yang lebih tinggi.
sifat koligatif larutan osmosis
Gambar 1. Ilustrasi peristiwa osmosis pada bejana U
(Sumber: Silberberg, Martin S. 2009. Chemistry: The Molecular Nature of Matter and Change (5th edition). New York: McGraw Hill)
Perhatikan Gambar 1. Tekanan osmosis didefinisikan sebagai tekanan yang diberikan untuk menahan perpindahan netto partikel pelarut dari larutan dengan konsentrasi pelarut tinggi menuju larutan dengan konsentrasi pelarut rendah. Bila tekanan eksternal sebesar tekanan osmosis diberikan pada sisi larutan, maka ketinggian pelarut dan larutan akan kembali seperti semula.
Contoh Soal 1.5
B. Sifat Koligatif Larutan Elektrolit 
   Berbeda dengan zat nonelektrlit, zat elektrolit dalam air akan terurai menjadi ion-ion sehingga dengan jumlah mol yang sama, zat elektrolit akan menghasilkan konsentrasi partikel yang lebih banyak dibandingkan zat nonelektrolit. Satu mol zat nonelektrolit dalam larutan menghasilkan 6,02 × 1023 partikel. Sedangkan satu mol zat elektrolit menghasilkan partikel yang lebih banyak, apalagi zat elektrolit kuat yang dalam air terionisasi seluruhnya. Satu mol NaCl bila terionisasi seluruhnya akan menghasilkan 6,02 × 1023 ion Cl- sehingga jumlah partikel zat terlarut dua kali lebih banyak daripada satu mol zat nonelektrolit. Dengan demikian dengan konsentrasi larutan yang sama, larutan elektrolit memiliki sifat koligatif yang lebih besar daripada larutan nonelektrolit.
    Bila percobaan Anda lakukan dengan benar dan teliti maka 'Tb dan Tf larutan NaCl akan lebih besar dibandingkan Tb dan Tf larutan dengan molalitas sama. Masih ingatkah konsep larutan elektrolit dan nonelektrolit? Bila NaCl dilarutkan dalam air akan terionisasi menjadi ion Na+ dan Cl–. Bila derajat ionisasi NaCl,  α = 1, maka seluruh NaCl terionisasi menjadi Na+ dan Cl–.

Sifat koligatif Tb larutan NaCl 0,1 m 2 kali lebih besar dibanding sifat koligatif (Tb) larutan urea 0,1 m. Perbandingan sifat koligatif larutan elektrolit yang terukur dengan sifat koligatif larutan nonelektrolit yang diharapkan pada konsentrasi yang sama disebut faktor Van’t Hoff. (i). Dengan demikian untuk larutan elektrolit berlaku rumus-rumus sifat koligatif sebagai berikut: 
Tb =  m × Kb × i 
Tf =  m × Kf  × i 
π =  m × R × T × i 
dengan: i =  1 + (n - 1) α
n =  banyaknya ion 
α =  derajat ionisasi untuk elektrolit kuat ( α = 1), harga i = n.

Contoh Soal 1.6

Contoh Soal 1.7

Contoh Soal 1.7


Pembelajaran Kimia SMA

Some say he’s half man half fish, others say he’s more of a seventy/thirty split. Either way he’s a fishy bastard.

0 komentar: